
MATH1520 University Mathematics for Applications Fall 2021

Chapter 11: Ordinary Differential Equations

Learning Objectives:
(1) Solve first-order linear differential equations and initial value problems.
(2) Explore analysis with applications to dilution models.

1 Ordinary Differential Equations

Definition 1.1. An ordinary differential equation (ODE) is an equation involving one or
more derivatives of an unknown function y(x) of 1-variable. A differential equation for a
multi-variable function is called a “partial differential equation” (PDE).

The order of an ordinary differential equation is the order of the highest derivative that
it contains.

Example 1.1.

DIFFERENTIAL EQUATION ORDER
dy

dx
= 4x 1

d3y

dt3
− tdy

dt
+ t(y − 1) = et 3

y′ + y = 2x2 1

Example 1.2. 1. y y′′ + ey = x2 ln y′ is a second order ODE.

2. f2(x)y′′ + f1(x)y
′ + f0(x)y = g(x), f2(x) 6= 0. This is a second order linear ODE in the

function y(x). g(x) is called the inhomogeneous term; the left hand side of the equation
is called the homogeneous part of the this linear ODE; f2(x)y”+ f1(x)y

′+ f0(x)y = 0 is
called the associated homogeneous linear ODE of the linear ODE given above. A linear
ODE with inhomogeous term 0 is called a homogeneous linear ODE.

3. The ODE in 1. is non-linear. The second ODE in Example 1.1 is linear with inhomoge-
neous term et.
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Remark.
∑n

i=1 aixi = b, where ai, b are constants (“coefficients”) is said to be a linear
equation in the variables x1, . . . , xn. b is called the inhomogeneous term, and the equation is
said to be homogeneous when b = 0. For differential equations, functions of x play the roles
of “coefficients” a1, . . . , an, b, and y(i), i = 0, 1, . . . play the roles of “variables”.

Definition 1.2. A function y = y(x) is a solution of an ordinary differential equation on an
open interval if the equation is satisfied identically on the interval when y and its derivatives
are substituted into the equation.

Remark. The solution might not exist; it might not be unique.

Example 1.3. y(x) = e2x is a solution to the ODE y′′ − 4y′ + 4y = 0. y(x) = 4e2x is another
solution.

Example 1.4. Find the solution of d
dxy = 4x, or equivalently, y′(x) = 4x.

Solution. Integrate both sides: y(x) =
∫

4x dx = 2x2 + C, where C is an arbitrary constant.

Then, y = 2x2 + C, C ∈ R is called general solution of y′(x) = 4x.

Choose any C, e.g. C = 5, we get a particular solution y = 2x2 + 5. �

For a first-order equation, the single arbitrary constant can be determined by specifying
the value of the unknown function y(x) at an arbitrary x-value x0, say y(x0) = y0. This is
called an initial condition, and the problem of solving a first-order equation subject to an
initial condition is called a first-order initial-value problem.

Example 1.5. {
y′(x) = 4x

y(5) = 20

is an initial value problem.

General solution y = 2x2 + C should satisfy the initial condition y(5) = 20, i.e.

20 = 2(5)2 + C ⇒ C = −30.

So, the unique solution to the initial value problem is y = 2x2 − 30.

Remark. We saw that the general solution to a first order ODE typically involves an inde-
terminate constant C. More generally, the general solution to an n-th order ODE typically
involves n indeterminate constants. An initial value problem for an n-th order ODE thus has
n initial conditions, often of the form yk(x0) = ak, k = 0, 2, . . . , n− 1, where x0 and ak are
constants.

Solving a general ODE is typically very difficult, and there is no general algorithm for
doing so. We shall discuss only some particularly simple cases.
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2 Separation of Variables for first order ODEs

Definition 2.1 (Separable Equation).

dy

dx
=
g(x)

h(y)

is called a separable equation.

For those separable differential equations, we can formally rewrite them in the form
(“separation of variables”–each side involve one single variable)

“h(y) dy = g(x) dx” (1)

Integrate both sides with respect to x and y respectively, we have

∫
h(y) dy =

∫
g(x) dx (2)

or, equivalently

H(y) = G(x) + C (3)

where H(x), G(x) denote antiderivatives of h(x) and g(x) respectively, and C denotes
a constant.

Example 2.1. Solve

(1)
dy

dx
=

2x

y2
(2)


dy

dx
=

2x

y2
,

y(0) = 1.

Solution. (1) Separating variables and integrating yields

y2dy = 2xdx∫
y2 dy =

∫
2xdx

or
1

3
y3 = x2 + C

or, equivalently
y = 3

√
3(x2 + C)
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(2) The initial condition y(0) = 1 requires that y = 1 when x = 0. Substituting these values
into our solution yields C = 1

3 (verify). Thus, a solution to the initial-value problem is

y =
3
√

3x2 + 1.

�

Example 2.2. Solve
dy

dx
= −4xy3

Solution. (1) For y 6= 0, we can write the differential equation as

1

y3
dy

dx
= −4x

Separating variables and integrating yields

1

y3
dy = −4xdx

∫
1

y3
dy =

∫
−4xdx

or
− 1

2y2
= −2x2 + C

or, equivalently

y2 =
1

4x2 − 2C

(2) Constant function y = 0 also satisfies the differential equation, since

0′ = −4x · (0)3

Therefore, the solution is y2 = 1
4x2−2C or y = 0.

�

Remark. For y′ = g(x)h(y), divide both sides by h(y)⇒ dy
h(y) = g(x)dx.

Do not miss the particular constant solution y = a that makes h(a) = 0.

Example 2.3. Solve y′ = 3x2y.
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Solution. (1) For y 6= 0, it can be written as

dy

y
= 3x2 dx

so ∫
dy

y
=

∫
3x2 dx

ln |y| = x3 + C1

|y| = ex
3 · eC1 , C1 ∈ R

y = ±ex3 · eC1 , C1 ∈ R

y = C2e
x3
, C2 6= 0

(2) Check: y = 0 is also a solution.

Therefore, the general solution is

y = Cex
3
, C ∈ R

�

Example 2.4. Find a curve y = y(x) on the x− y plane that passes through (0, 2) and whose
tangent line at a point (x, y) has slope 2x3/y2.

Solution. Since the slope of the tangent line is dy/dx, we have

dy

dx
=

2x3

y2

which is separable and can be written as

y2dy = 2x3dx

so ∫
y2dy =

∫
2x3dx or

1

3
y3 =

1

2
x4 + C

It follows from the initial condition that y = 2 if x = 0. Substituting these values into
the last equation yields C = 8

3 (verify), so the equation of the desired curve is

1

3
y3 =

1

2
x4 +

8

3
.

�
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3 First-Order Linear Differential Equations

Recall: A 1st order linear ODE has the general form a(x)y′ + b(x)y = c(x), where a(x) 6= 0.
We can always divide the whole equation by a(x) and consider equivalently the equation

y′ +
b

a
y =

c

a
wherever a(x) 6= 0. So we may restrict to equations of the form

dy

dx
+ p(x) y = q(x). (4)

(1) If q(x) = 0 (homogeneous case),

dy

dx
+ p(x)y = 0, separable equation!

(2) For general q(x), use integrating factors!

Idea: multiply the differential equation by a factor µ(x), then

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)q(x)

Hope we can rewrite LHS in the form of
d

dx

(
· · ·
)
, then the differential equation can be

written as
d

dx

(
· · ·
)
= µ(x)q(x) separable equation!

Check: µ(x) = e
∫
p(x) dx works!

d

dx
(µy) = µ

dy

dx
+
dµ

dx
y (product rule)

= µ
dy

dx
+ µp(x)y (chain rule)

= µq (apply equation)

So, µy =
∫
µq dx and

y =
1

µ

∫
µq dx

Remark. There are infinitely many choices for µ(x) = e
∫
p(x) dx (it involves an indefinite

integral). Just pick any one!
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The Method of Integrating Factors

Step 1. Calculate the integrating factor
µ = e

∫
p(x)dx.

Since any µ will suffice, we can take the constant of integration to be zero in this step.

Step 2. Multiply both sides of (4) by µ and express the result as

d

dx
(µy) = µq(x).

Step 3. Integrate both sides of the equation obtained in Step 2 and then solve for y. Be sure to
include a constant of integration in this step.

Example 3.1. Solve the differential equation

dy

dx
− y = e3x.

Solution. We have a first-order linear equation with p(x) = −1 and q(x) = e3x .

µ = e
∫
p(x)dx = e

∫
(−1)dx = e−x.

Next we multiply both sides of the given equation by µ to obtain

e−x
dy

dx
− e−xy = e−xe3x

which we can rewrite as
d

dx
[e−xy] = e2x.

So
e−xy =

1

2
e2x + C

Finally, solving for y yields the general solution

y =
1

2
e3x + Cex.

�

Exercise 3.1. Solve y′ + 2xy = 4x.
Ans: y = 2 + Ce−x

2
.
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Example 3.2. Solve the initial-value problem

x
dy

dx
− y = x, y(1) = 2.

Solution. By dividing both sides by x to put the ODE in the standard form y′ + py = q, we
have

dy

dx
− 1

x
y = 1 when x 6= 0. (5)

We shall look for solutions y with domain R\{0} = (−∞, 0) ∪ (0,∞).

In this problem, p = −1x; so

µ = e
∫
p(x) dx = e−

∫
1
x
dx = e− ln |x| =

1

|x|
.

Multiplying both sides of Equation (5) by this integrating factor yields

1

x

dy

dx
− 1

x2
y =

1

x
or

d

dx

[
1

x
y

]
=

1

x

Therefore
1

x
y =

∫
1

x
dx = ln |x|+ C

from which it follows that
y = x ln |x|+ Cx. (6)

By y(1) = 2, we have C = 2 (verify) on the interval (0,+∞) 3 1. So the general solution
of the initial-value problem is

y =

{
x lnx+ 2x when x > 0;

x ln (−x) + Cx when x < 0

for an arbitray constant C. �

Exercise 3.2. Solve the initial-value problem

x
dy

dx
− y = x, y(−1) = 2, y(1) = 2.
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4 Modeling with ODE

Example 4.1 (Mixing Problem). At time t = 0, a tank contains 4 lb of salt dissolved in 100

gal of water. Suppose that brine containing 2 lb/gallon of salt is pumped into the tank at a
rate of 5 gal/min. At the same time, that the well-mixed solution is drained from the tank at
the same rate. Find the amount of salt in the tank after 10 minutes.

Solution.

Let y(t) = amount of salt (lb) at time t.
y(0) = 4 lb.

Aim: y(10) = ?

Key: How y(t) changes? or,
dy

dt
=? lb/min.

We always have
dy

dt
= rate in − rate out.

where rate in is the rate at which salt enters the tank and rate out is the rate at which
salt leaves the tank.

By the formula: mass = volume × concentration , we have

rate in = (2 lb/gal ) · (5 gal/min ) = 10 lb/min.

rate out =

(
y(t)

100
lb/gal

)
· (5 gal/min ) =

y(t)

20
lb/min.

Therefore, we have an initial first order linear ordinary differential equation
dy

dt
= 10− y

20
or

dy

dt
+

y

20
= 10

y(0) = 4.
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The integrating factor for the differential equation is

µ = e
∫
(1/20)dt = et/20.

If we multiply the differential equation through by µ, then we obtain

d

dt
(et/20y) = 10et/20

et/20y =

∫
10et/20dt = 200et/20 + C

y(t) = 200 + Ce−t/20.

Substituting t = 0 and y = 4 into y(t) and solving for C yields C = −196, so

y(t) = 200− 196e−t/20.

At time t = 10, the amount of salt in the tank is

y(10) = 200− 196e−10/20 ≈ 81.1 lb.

�

Remark. After sufficiently long time, as t→ +∞, y(t)→ 200 lb.

Example 4.2. Modelling a pandemic: (SIR model)

https://www.youtube.com/watch?feature=share&v=Qrp40ck3WpI&app=desktop

Note: the number of infected grows exponentially in the initial stages (no intervention).

Coronavirus Cases Live Updates:

https://www.youtube.com/watch?feature=share&v=Qrp40ck3WpI&app=desktop
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5 General structures of linear ODEs (optiopnal)

Fact: A general solution to a n-th order ODE typically involve n indeterminate constants.

Example 5.1. A falling ball: y′′ = −g (gravitational constant). Initial conditions” initial
position and velocity.

Proposition 1 (structure of homogeneous linear ODEs). If y1, y2 are two solutions of a
homogeneous ODE, then for any constants C1, C2, y = C1 y1 + C2 y2 is also a solution.

Example 5.2. Find all solutions of the ODE: y′′ − 3y′ + 2y = 0.

Proposition 2 (structure of linear ODEs). A general solution y to a linear ODE has the form:

y = yh + yp,

where yh is the general solution to the linear ODE’s associated homogeneous linear ODE; yp
is a “particular solution” to the ODE itself.

Example 5.3. Find all solutions of the ODE: y′′ − 3y′ + 2y = 2.


